User Acceptance Issues in Music Recommender Systems
نویسنده
چکیده
Two music recommender systems were compared side-byside in an in-depth between-subject lab study. The main objectives were to investigate users’ acceptance of music recommendations and to probe the main technology acceptance model in the environment of low involvement recommendations. Our results show that perceived usefulness (quality) and perceived ease of use (effort) are the key dimensions which are sufficient to incite users to accept recommendations, and that the adapted model is suitable for entertainment recommenders. Measures of quality such as accuracy, enjoyment, satisfaction and having music tailored to a user’s taste are directly correlated with acceptance, and measures of effort like the initial time to reach interesting recommendations and the ease of use for discovering music are strongly linked to acceptance. The study shows how important it is for a music recommender system to take into account users’ emotions and mood. Finally, the results highlight the necessity for low-involvement recommenders to be highly reactive. ACM Classification
منابع مشابه
Context-Aware Recommender Systems: A Review of the Structure Research
Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...
متن کاملIncreasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملسیستم پیشنهاد دهنده زمینهآگاه برای انتخاب گوشی تلفن همراه با ترکیب روشهای تصمیمگیری جبرانی و غیرجبرانی
Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...
متن کاملDo You Feel How I Feel? An Affective Interface in Social Group Recommender Systems
Group and social recommender systems aim to recommend items of interest to a group or a community of people. The user issues in such systems cannot be addressed by examining the satisfaction of their members as individuals. Rather, group satisfaction should be studied as a result of the interaction and interface methods that support group awareness and interaction. In this paper, we introduced ...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کامل